以是在空虚的空间里场不成能严格地被牢固为零,因为那样它就既有精确的值(零)又有精确的窜改率(也是零)。场的值必须有必然的最小的不肯定性量或量子起伏。
人们非常轻易从黑洞面积的非减行动遐想起被叫做熵的物理量的行动。熵是测量一个体系的无序的程度。知识奉告我们,如果不停止内部干与,事物老是偏向于增加它的无序度。(你只要停止保养屋子就会看到这一点!)人们能够从无序中缔造出有序来(比方你能够油漆屋子),但是必须耗损精力或能量,如许减少了可操纵的有序能量的数量。
我俄然认识到,这些光芒的途径永久不成能相互靠近。如果它们靠近,它们终究就必然相撞。这正如和另一个往相反方向逃离差人的人相遇一样――你们俩都会被抓住(或者,在这类景象下落到黑洞中去)。但是,如果这些光芒被黑洞淹没,那它们就从未在黑洞的鸿沟上呆过。
热力学第二定律是这个看法的一个精确描述。它陈述道:一个伶仃体系的熵老是增加的,并且将两个体系连接在一起时,其归并体系的熵大于统统伶仃体系熵的总和。
开初我觉得这类辐射表白我利用的一种近似无效。我担忧如果柏肯斯坦发明了这个环境,他就必然会用它去进一步支撑他关于黑洞熵的思惟,而我仍然不喜好这类思惟。但是,我越细心考虑,越感觉这近似实在应当有效。但是,最后使我佩服这辐射是实在的来由是,这辐射的粒子谱刚好是一个热体辐射的谱,并且黑洞以刚好制止第二定律被违背的精确速率发射粒子。而后,其别人用多种分歧的情势反复了这个计算。他们统统人都证明了黑洞必须如同一个热体那样发射粒子和辐射,其温度只依靠于黑洞的质量――质量越大则温度越低。