首页 > 时间简史 > 第18章 宇宙的起源和命运(1)

我的书架

我在全部70年代首要研讨黑洞,但在1981年插手在梵蒂冈由耶稣会构造的宇宙学集会时,我对于宇宙的发源和运气题目的兴趣被重新唤起。当上帝教会试图对科学的题目发号施令,并宣布太阳环绕着地球活动时,对伽利略犯下了严峻的弊端。几个世纪后的现在,它决定聘请一些专家做宇宙学题目的参谋。在集会的序幕,教皇访问统统与会者。他奉告我们,在大爆炸以后的宇宙演变是能够研讨的,但是我们不该该去过问大爆炸本身,因为那是创生的时候,因此只能是上帝的事件。我心中窃喜,看来他并不晓得,我刚在集会上作过的演讲的主题――时空有限而无界的能够性,这意味着它没有开端、没有创生的时候。

跟着时候流逝,星系中的氢和氦气体被豆割成更小的星云,它们在本身引力下坍缩。当它们收缩时,此中的原子相互碰撞,气体温度降低,直到最后,热得足以开端热聚变反应。这些反应将更多的氢窜改成氦,开释出的热增加了压力,是以使星云不再持续收缩。它们会稳定地在这类状况下,作为像太阳一样的恒星逗留一段很长的时候,它们将氢燃烧成氦,并将获得的能量以热和光的情势辐射出来。质量更大的恒星需求变得更热,以均衡它们更强的引力吸引,使得其核聚变反应停止得极快,乃至于它们在1亿年这么短的时候里将氢耗光。然后,它们会略微收缩一点,而跟着它们进一步变热,就开端将氦窜改成像碳和氧如许更重的元素。但是,这一过程没有开释出太多的能量,以是正如在黑洞那一章描述的,危急就会产生了。人们不完整清楚下一步还会产生甚么,但是看来恒星的中间地区很能够坍缩成一个非常致密的状况,比方中子星或黑洞。恒星的内部地区偶然会在称为超新星的庞大发作中吹出来,这类发作使星系中的统统恒星在相形之下显得暗淡无光。恒星靠近生命起点时产生的一些重元素就被抛回到星系里的气体中去,为下一代恒星供应一些质料。因为我们的太阳是第二代或第三代恒星,是约莫50亿年前由包含有更早超新星碎片的扭转气体云构成的,以是约莫包含2%如许的重元素。云里的大部分气体构成了太阳或者喷到内里去,但是少量的重元素堆积在一起,构成了像地球如许的,现在作为行星环绕太阳公转的物体。

(2)为何宇宙在大标准上如此均匀?为何它在空间的统统点上和统统方向上看起来不异?特别是,当我们朝分歧方向看时,为何微波辐射背景的温度几近完整不异?

(1)为何初期宇宙如此之热?

一种能够的答复是,上帝挑选宇宙的这类初始布局是因为某些我们有望了解的启事。这必定是在一个全能造物主的力量以内。但是如果他使宇宙以这类不能了解的体例开端,他为何又挑选让它遵循我们可了解的定律去演变?

来了解被遍及接管的宇宙汗青。这是假定从早到大爆炸时候起宇宙便可用弗里德曼模型来描述。在此模型中,人们发明当宇宙收缩时,此中的任何物体或辐射都变得更凉(当宇宙的标准大到2倍,它的温度就降落到一半。)因为温度便是粒子的均匀能量――或速率的测度,宇宙的变凉对于此中的物质就会有较大的效应。在非常高的温度下,粒子能够活动得如此之快,能够逃脱任何由核力或电磁力将它们吸引在一起的感化。但是能够预感到,跟着它们冷却下来,粒子相互吸引并且开端结块。更有甚者,连存在于宇宙中的粒子种类也依靠于温度。在充足高的温度下,粒子的能量是如此之高,只要它们碰撞就会产生很多分歧的粒子/反粒子对一一并且,固然此中一些粒子打到反粒子上去时会泯没,但是它们产生得比泯没得更快。但是,在更低的温度下,碰撞粒子具有较小的能量,粒子/反粒子对产生得不快――而泯没则变得比产生更快。

推荐阅读: 让你打官司,没让你把住持也送进去     秦王神藏     重生的我主宰末世     中道     重塑金身系统[快穿]     权少霸爱:宝贝,休想逃     大唐便利店     重生国民女神:司少,放肆爱!     重生之黑暗纪元     总裁诱爱小娇妻     江湖略     情深不渝    
sitemap