首页 > 时间简史 > 第24章 虫洞和时间旅行(1)

我的书架

相对论确切给了我们一些欣喜。这就是在第二章提及的双生子佯谬。

这导致一个附加的效应,一名航天员能够在他乘航天飞船解缆之前即已回到地球。这本性子使爱因斯坦非常懊丧,他曾经觉得广义相对论不答应时候观光。但是,鉴于爱因斯坦对引力坍缩和不肯定性道理的无端反对,这或许反而是一个令人鼓励的迹象。因为我们能够证明,我们保存此中的宇宙是不扭转的,以是哥德尔找到的解并不对应于它。它另有一个非零的宇宙常数。宇宙常数是当爱因斯坦觉得宇宙是稳定时引进的。在哈勃发明了宇宙的收缩后,就不再需求宇宙常数,而现在遍及以为它应为零。但是,以后从广义相对论又找到其他一些更公道的时空,它们答应观光到畴昔。此中之一便是扭转黑洞的内部。别的一种是包含两根快速相互穿越的宇宙弦的时空。顾名思义,宇宙弦是弦状的物体,它具有长度,但是截面很藐小。实际上,它们更像在庞大张力下的橡皮筋,其张力约莫为1亿亿亿吨。把一根宇宙弦系到地球上,就会把地球在1/30秒的时候里从每小时零英里加快到每小时60英里。宇宙弦初听起来像是科学胡想物,但有来由信赖,在初期宇宙中由在第五章会商过的那种对称破缺机制能够构成宇宙弦。因为宇宙弦具有庞大的张力,并且能够从任何形状肇端,以是它们一旦伸展开来,就会加快到非常高的速率。

这已被尝试很好地查验过。人们以为,即便用更初级的实际去代替相对论,它仍然会被作为一个特性保存下来。

哥德尔解和宇宙弦时空一开端就这么扭曲,使得总能观光到畴昔。上帝或许会创生了一个如此卷曲的宇宙,但是我们没有来由信赖他会如许做。微波背景和轻元素丰度的观察表白,初期宇宙并没有答应时候观光的曲率。如果无鸿沟假想是精确的,从实际的根本上也能导出这个结论。

却已在前晚达到。

有位年青蜜斯名怀特,

1949年库尔特・哥德尔发明了广义相对论答应的新的时空。这初次表白物理学定律的确答应人们在时候里观光。哥德尔是一名数学家,他因为证了然不完整性定理而名震天下。该定理是说,不成能证明统统真的陈述,即便你只试图证明像算术这么明白并且古板的学科中统统真的陈述。这个定理或许是我们了解和预言宇宙才气的根基极限,但是起码迄今为止,它仿佛还未成为我们寻求完整同一实际的停滞。

哥德尔在和爱因斯坦于普林斯顿初级学术研讨所度过他们暮年时晓得了广义相对论。他的时空具有一个古怪的性子:全部宇宙都在扭转。人们或许会问:“它相对于何物扭转?”其答案是远处的物体环绕着小陀螺或者陀螺仪的指向扭转。

时空分歧地区之间的虫洞的思惟并非科学胡想作家的发明,它的发源是非常令人尊敬的。

如许题目就变成:如果宇宙初始就没偶然候观光必须的曲率,我们可否随后把时空的部分地区卷曲到这类程度,直至答应时候观光?

要突破光速壁垒存在一些题目。相对论奉告我们,飞船的速率越靠近光速,用以对它加快的火箭功率就必须越来越大。对此我们已有尝试的证据,但不是航天飞船的经历,而是在诸如费米尝试室或者欧洲核子研讨中间的粒子加快器中的根基粒子的经历。我们能够把粒子加快到光速的99.99%,但是不管我们注入多少功率,也不成能把它们加快到超越光速壁垒。航天飞船的景象也是近似的:不管火箭有多大功率,也不成能加快到光速以上。

如许,如果超光速观光是能够的,活动的察看者会说,就有能够处置务B,也就是议会揭幕式,赶到事件A,也就是百米比赛。如果他活动得更快一些,他乃至还来得及在赛事之前赶回,并在得知谁是赢家的景象下放下赌金。

推荐阅读: 纸人抬棺     天帝成长记     艾泽拉斯圣光轨迹     穿成影帝的作精小娇妻     献上世界的游戏     快穿之薄命册     青梅小甜心:腹黑竹马宠心尖     逆天独尊,绝世大小姐     愿时光温柔不负你     我的极品仙子老婆     是你小子把妖怪引过来的     神话科学大爆炸    
sitemap