麦克斯韦实际预言,射电波或光波应以某一牢固的速率行进。但是牛顿实际已经摆脱了绝对静止的看法,以是如果假定光以牢固的速率行进,人们就必须说清这牢固的速率是相对于何物来测量的。是以有人提出,存在着一种无所不在的称为“以太”的物质,乃至在“真空的”空间中也是如此。正如声波在氛围中行进一样,光波应当通过以太行进,以是它们的速率应是相对于以太而言的。相对于以太活动的分歧察看者,会看到光以分歧的速率冲他们而来,但是光对以太的速率保持稳定。特别是本地球在它环绕太阳的轨道穿过以太时,在地球通过以太活动的方向测量的光速(当我们对光源活动时)应当大于在与活动垂直方向测量的光速(当我们不对光源活动时)。1887年,阿尔伯特・迈克耳孙(他厥后成为美国第一名诺贝尔物理学奖获得者)和爱德华・莫雷在克里夫兰的凯思利用科学黉舍停止了一个非常细心的尝试。他们将沿地球活动方向以及垂直于此方向的光速停止比较。使他们大为诧异的是,他们发明这两个光速完整一样!
如许,在伽利略之前,没有一小我想看看分歧重量的物体是否确切以分歧速率下落。传闻,伽利略从比萨斜塔大将重物落下,从而证了然亚里士多德的信心是错的。这故事几近不敷以信,但是伽利略的确做了一些等效的事――让分歧重量的球沿光滑的斜面上滚下。这环境近似于重物的垂直下落,只是因为速率小而更轻易察看罢了。伽利略的测量指出,不管物体的重量多少,其速率增加的速率是一样的。比方,你在一个沿程度方向每走10米即降落1米的斜面上开释1个球,则1秒钟后球的速率为每秒1米,2秒钟后为每秒2米,等等,而不管这个球多重。当然,一个铅锤比一片羽毛下落得更快些,那只是因为氛围阻力将羽毛的速率降落。如果一小我开释两个不受任何氛围阻力的物体,比方两个分歧的铅锤,它们则以一样速率降落。在没有氛围停滞东西下落的月球上,航天员大卫,斯各特停止了羽毛和铅锤尝试,并且发明二者确切同时落到月面上。
如许,不存在绝对静止意味着不能像亚里士多德信赖的那样,给事件指定一个绝对的空间位置。事件的位置以及它们之间的间隔对于在有轨电车上和铁轨上的人来讲是分歧的,以是没有来由觉得一小我的态度比别人的更优胜。
牛顿把伽利略的测量当作他的活动定律的根本。在伽利略的尝试中,当物体从斜坡上滚下时,它一向遭到稳定外力(它的重量)的感化,其效应是使它恒定地加快。
这表白,力的真正效应老是窜改物体的速率,而不是像本来想像的那样,仅仅使之活动。同时,它还意味着,只要物体没有遭到外力,它就会以一样的速率保持直线活动。
在他们之前,人们信赖亚里士多德,他说物体的天然状况是静止的,并且只要在遭到力或打击的鞭策时才活动。如许,重的物体比轻的物体下落得更快,因为它遭到更大的将其拉向地球的力。
亚里士多德的传统观点还觉得,人们依托纯粹思惟便能够找出统统制约宇宙的定律:不需求用观察去查验之。
在1887年至1905年之间,最闻名者为荷兰物理学家亨得利克・洛伦兹做出的。但是,一名迄至当时还冷静知名的瑞士专利局的职员阿尔伯特・爱因斯坦,在1905年的一篇闻名的论文中指出,只要人们情愿丢弃绝对时候看法的话,全部以太的看法则是多余的。几个礼拜以后,法国第一流的数学家亨利・庞加莱也提出近似的观点。爱因斯坦的论证比庞加莱的论证更靠近物理,后者将其考虑为数学题目。凡是这个新实际归功于爱因斯坦,但人们不会健忘庞加莱的名字在此中起了首要的感化。