到19世纪60年代前期,麦克斯韦提出位移电流的观点,并在提出用一组微分方程来描述电磁场的遍及规律,这组方程今后被称为麦克斯韦方程组。按照麦克斯韦方程组,能够推出电磁场的扰动以波的情势传播,以及电磁波在氛围中的速率为每秒31万千米,这与当时已知的氛围中的光速每秒31.5万千米在尝试偏差范围内是分歧的。
麦克斯韦在指出电磁扰动的传播与光传播的类似以后写道:“光就是产生电磁征象的媒质(指以太)的横振动”。厥后,赫兹用尝试体例证明了电磁波的存在。光的电磁实际胜利地解释了光波的性子,如许以太不但在电磁学中获得了职位,并且电磁以太同光以太也同一了起来。
跟着引力的平方反比定律在天体力学方面的胜利,以及看望以太得实验并未获得实际成果,使得超距感化观点得以风行。光的颠簸说也被放弃了,微粒说获得遍及的承认。到18世纪前期,证明了电荷之间(以及磁极之间)的感化力一样是与间隔平方成反比。因而电磁以太的观点亦被丢弃,超距感化的观点在电学中也占了主导职位。
但是按照麦克斯韦方程组,电磁波的传播不需求一个“绝对静止”的参照系,因为该方程里两个参数都是无方向的标量,以是在任何参照系里光速都是稳定的。
但爱因斯坦则大胆丢弃了以太学说,以为光速稳定是根基的道理,并以此为解缆点之一创建了狭义相对论。固然厥后的究竟证明白实不存在以太,不过以太假说仍然在我们的糊口中留下了陈迹,如以太网等。
在这一期间还曾建立了其他一些以太模型,不过以太论也碰到一些题目。起首,若光波为横波,则以太应为有弹性的固体媒质。那么为何天体运转此中会不受阻力呢?有人提出了一种解释:以太能够是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有充足的弹性像是固体,而对于像天体那样慢的活动则像流体。
在古希腊,以太指的是彼苍或上层大气。在宇宙学中,偶然又用以太来表示占有天体空间的物质。
在法拉第心目中,感化是慢慢传畴昔的观点有着非常安稳的职位,他引入了力线来描述磁感化和电感化。在他看来,力线是实际的存在,空间被力线充满着,而光和热能够就是力线的横振动。他曾提出用力线来代替以太,并以为物质原子能够就是堆积在某个点状中间四周的力线场。他在1851年又写道:“如果接管光以太的存在,那么它能够是力线的荷载物。”但法拉第的观点并未为当时的实际物理学家们所接管。
众所周知,人类的科学是对已知天然征象的归纳和总结,当人类观察天然的手腕和体例获得进步时,很多已知的知识,乃至是被奉为真谛的规条,不免与尝试观察成果产生不相符合的状况。为体味决这个冲突,要么是放弃曾经的真谛,修改知识体系,要么是不顾面前产生的究竟,恪守崇高不成摆荡的真谛。至于那些信奉科学到了科学境地的人,才会为了保护真谛而窜改究竟,殊不知,当真谛走到了必须依托信奉来保持,而不是究竟来考证,真谛就已经不再是真谛,科学也已经不再是科学,彻头彻尾地便成了一种科学。
19世纪,以太论获得答复和生长,这起首还是从光学开端的,主如果托马斯・杨和菲涅耳事情的成果。杨用光波的干与解释了牛顿环,并在尝试的启迪下,于1817年提出光波为横波的新观点,处理了颠簸说耐久不能解释光的偏振征象的困难。科学家们慢慢发明光是一种波,而糊口中的波大多需求传播介质(如声波的通报需求借助于氛围,水波的传播借助于水等)。受传统力学思惟影响,因而他们便假想宇宙到处都存在着一种称之为以太的物质,而恰是这类物质在光的传播中起到了介质的感化。