麦克斯韦在指出电磁扰动的传播与光传播的类似以后写道:“光就是产生电磁征象的媒质(指以太)的横振动”。厥后,赫兹用尝试体例证明了电磁波的存在。光的电磁实际胜利地解释了光波的性子,如许以太不但在电磁学中获得了职位,并且电磁以太同光以太也同一了起来。
为了适应光学的需求,人们对以太假定一些非常的属性,如1839年麦克可拉模型和柯西模型。再有,因为对分歧的光频次,折射率也分歧,因而曳引系数对于分歧频次亦将分歧。如许,每种频次的光将不得不有本身的以太等等。以太的这些仿佛相互冲突性子实在是超出了人们的了解才气。
19世纪,以太论获得答复和生长,这起首还是从光学开端的,主如果托马斯・杨和菲涅耳事情的成果。杨用光波的干与解释了牛顿环,并在尝试的启迪下,于1817年提出光波为横波的新观点,处理了颠簸说耐久不能解释光的偏振征象的困难。科学家们慢慢发明光是一种波,而糊口中的波大多需求传播介质(如声波的通报需求借助于氛围,水波的传播借助于水等)。受传统力学思惟影响,因而他们便假想宇宙到处都存在着一种称之为以太的物质,而恰是这类物质在光的传播中起到了介质的感化。
跟着引力的平方反比定律在天体力学方面的胜利,以及看望以太得实验并未获得实际成果,使得超距感化观点得以风行。光的颠簸说也被放弃了,微粒说获得遍及的承认。到18世纪前期,证明了电荷之间(以及磁极之间)的感化力一样是与间隔平方成反比。因而电磁以太的观点亦被丢弃,超距感化的观点在电学中也占了主导职位。
量子力学的建立更加强了这类观点,因为人们发明,物质的原子以及构成它们的电子、质子和中子等粒子的活动也具有波的属性。颠簸性已成为物质活动的根基属性的一个方面,那种仅仅把颠簸了解为某种媒介物质的力学振动的局促观点已完整被突破。
众所周知,人类的科学是对已知天然征象的归纳和总结,当人类观察天然的手腕和体例获得进步时,很多已知的知识,乃至是被奉为真谛的规条,不免与尝试观察成果产生不相符合的状况。为体味决这个冲突,要么是放弃曾经的真谛,修改知识体系,要么是不顾面前产生的究竟,恪守崇高不成摆荡的真谛。至于那些信奉科学到了科学境地的人,才会为了保护真谛而窜改究竟,殊不知,当真谛走到了必须依托信奉来保持,而不是究竟来考证,真谛就已经不再是真谛,科学也已经不再是科学,彻头彻尾地便成了一种科学。
在笛卡儿看来,物体之间的统统感化力都必须通过某种中间媒介物质来通报,不存在任何超距感化。是以,空间不成能是空无统统的,它被以太这类媒介物质所充满。以太固然不能为人的感官所感受,但却能通报力的感化,如磁力和月球对潮汐的感化力。
菲涅耳关于以太的一个首要实际事情是导出光在相对于以太参照系活动的透明物体中的速率公式。1818年他为了解释阿拉果关于星光折射行动的尝试,在杨的设法根本上提出:透明物质中以太的密度与该物质的折射率二次方成反比,他还假定当一个物体相对以太参照系活动时,其内部的以太只是超越真空的那一部分被物体动员(以太部分曳引假说)。操纵菲涅耳的实际,很轻易就能获得活植物体内光的速率。
关于电场同位移有某种对应,并不是完整新的设法,汤姆孙就曾把电场比作以太的位移。别的,法拉第在更早就提出,当绝缘物质放在电场中时,此中的电荷将产生位移。麦克斯韦与法拉第分歧之处在于,他以为非论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移的大小与电场强度成反比。当电荷粒子的位移随时候窜改时,将构成电流,这就是他所谓的位移电流。对麦克斯韦来讲,位移电流是实在的电流,而现在我们晓得,只是此中的一部分(极化电流)才是实在的电流。