首页 > 网游之另类仇敌 > 第26章 这是什么鬼节奏

我的书架

注:c(k,n)=n!/(k!(n-k)!)^代表前面括号及此中内容为上标,求xx阶导数

【证明】先证:假定地区的形状以下(用平行于轴的直线穿过地区,与地区鸿沟曲线的交点最多两点)

把t再写成x,就变成了开首的公式,该公式就是牛顿-莱布尼茨公式。

公式利用:那么如安在用积分获得上述路程公式呢

但是这里x呈现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,如许意义就非常清楚了:

【定义一】设是一个开地区,函数,在内具有一阶持续偏导数,如果对于内肆意两点,以及内从点到点的肆意两条曲线,,等式恒建立,就称曲线积分在内与途径无关;不然,称与途径有关.定义一还可换成以下等价的说法若曲线积分与途径无关,那么即:在地区内由所构成的闭合曲线上曲线积分为零.反过来,如果在地区内沿肆意闭曲线的曲线积分为零,也可便利地导出在内的曲线积分与途径无关.

另一方面,据对坐标的曲线积分性子与计算法有

折叠曲线积分与途径无关的前提

格林公式

【定理】设开地区是一个单连通域,函数,在内具有一阶持续偏导数,则在内曲线积分与途径无关的充分需求前提是等式在内恒建立.证明:先证充分性在内任取一条闭曲线,因单连通,故闭曲线所围成的地区全数在内.从而在上恒建立.由格林公式,有依定义二,在内曲线积分与途径无关.再证需求性(采取反证法)假定在内等式不恒建立,那么内起码存在一点,使无妨设因为在内持续,在内存在一个觉得圆心,半径充分小的圆域,使得在上恒有由格林公式及二重积分性子有这里是的正向鸿沟曲线,是的面积.这与内肆意闭曲线上的曲线积分为零的前提相冲突.故在内等式应恒建立.说明:定理所需求的两个前提缺一不成.【反例】会商,此中是包抄原点的一条分段光滑曲线且正向是逆时针的.这里撤除原点外,在所围成的地区内存在,持续,且.在内,作一半径充分小的圆周在由与所围成的复连通域内利用格林公式有

ΔΦ=Φ(xΔx)-Φ(x)=xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt

综合有当地区的鸿沟曲线与穿过内部且平行于坐标轴(轴或轴)的任何直线的交点最多是两点时,我,同时建立.将两式归并以后即得格林公式

牛顿-莱布尼茨公式

公式(1)叫做格林公式.

因而有Φ(x)f(a)=f(x),当x=b时,Φ(b)=f(b)-f(a),

(1)∮cp(x,y)dxq(x,y)dy=∫∫d(dq/dx-dp/dy)dxdy

研讨这个函数Φ(x)的性子:1、定义函数Φ(x)=x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联络

高斯公式

是以

这些东西你们看得懂么,归正我是看不懂的(⊙o⊙)…

折叠格林公式:【定理】设闭地区由分段光滑的曲线围成,函数及在上具有一阶持续偏导数,则有

'(x)=f(x)。

易见,图二所表示的地区是图一所表示的地区的一种特别环境,我们仅对图一所表示的地区赐与证明便可.

注:若地区不满足以上前提,即穿过地区内部且平行于坐标轴的直线与鸿沟曲线的交点超越两点时,可在地区内引进一条或几条帮助曲线把它分划成几个部分地区,使得每个部分地区合适上述前提,仍可证明格林公式建立.格林公式相同了二重积分与对坐标的曲线积分之间的联络,是以其利用非常地遍及.

推荐阅读: 疯妃传     这个疯子惹不起     1号新妻:老公,宠上瘾!     饥饿地狱     当我熬死皇帝之后     你与时光皆薄情     抗战之第十班     爱你是唯一的秘密     重生初中:首席男神撩一送一     修炼到9999级,我决定出山     最佳二传     非常医仙    
sitemap