另一个在小行星主带外缘的高倾角家属是福后星族,轨道在间隔太阳2.25到2.5天文单位之间。首要由s-型的小行星构成,在靠近匈牙利族的四周有一些e-型的小行星。
最大师族之一的花神星族已知的成员超越800颗,能够是在十亿年前的撞击后构成的,首要漫衍在主带的内侧边沿。
另有第三类的小行星,总数约占10%的m-型小行星。它们的光谱中含有近似铁-镍的谱线,显红色或轻微的红色,而没有接收线的特性。m-型小行星猜测是由核心以铁-镍为主母体颠末毁灭性撞击构成。在主带内,m-型小行星首要漫衍在半长径2.7天文单位的轨道上。
在小行星带发明后,必必要计算它们的轨道元素。1866年,丹尼尔·柯克伍德宣布由太阳算起,在某些间隔上是没有小行星存在的空缺地区,而在这些地区上绕太阳公转的轨道周期与木星的公转周期有简朴的整数比。柯克伍德以为是木星的摄动导致小行星从这些轨道上被移除。
参看柯克伍德空地
1802年,天文学家奥伯斯(h.olbere)在同一地区内又发明另一小行星,随后定名为智神星(pallas)。威廉·赫歇尔就建议这些天体是一颗行星被破坏后的残存物。到了1807年,在不异的地区内又增加了第三颗婚神星和第四颗灶神星。因为这些天体的表面近似恒星,威廉·赫歇尔就采取希腊文中的语根aster-(似星的)定名为asteroid,中文则译为小行星。
发明第一颗小行星谷神星的皮亚齐。1766年德国天文学家提丢斯(j.titius)偶尔发明一个数列:(n+4)/10,将n=0,3,6,12,……代入,可相称精确地给出当时已知行星的轨道半径。这件事开初未引发人们的重视,厥后柏林天文台的台长波德(j.bode)得知后将它颁发,乃为天文界所知。在1781年发明天王星以后,进一步证明公式有效,波德因而建议在火星和木星轨道之间或许另有一颗行星。1801年,西西里和皮亚齐(g.plazzi)在例行的天文观察中偶尔发明在2.77au处有个小天体,即把它定名为谷神星(ceres)。
靠近内侧的部分,间隔太阳2.5天文单位,以含硅的s-型小行星较为常见,光谱显现其大要含有硅酸盐与一些金属,但碳质化合物的成分不较着。这表白它们与原始太阳系的成分有明显辨别,能够因为太阳系初期的溶化机制,导致分化的成果。相对c-型小行星来讲,此类小行星有着高反射率。在小行星带的全部族群中约占17%。
除了小行星的主体以外,小行星带中也包含了半径只稀有百微米的灰尘微粒。这些纤细颗粒起码有一部分是来自小行星之间的碰撞(或藐小的陨石体对小行星的撞击)。因为坡印廷·罗伯逊阻力,来自太阳辐射的压力会使这些粒子以螺旋的途径迟缓的朝向太阳挪动。
·因为在40亿年前,小行星带的大小和漫衍就已经稳定下来(相对于全部太阳系),也就是说小行星带的主带在大小上已经没有明显的增减窜改。但小行星仍然会遭到很多随掉队程的影响,如内部的热化、撞击形成的熔化、来自宇宙线和微流星体轰击的太空风化。
主带也较着的被分红表里二区带,内区带由靠近火星的的地区一向到3:1(2.5天文单位)共振的空地,外区带一向延长到靠近木星轨道的四周。(也有些人以2:1共振空地做为表里区带的分界,或是分红内、中、外三区。)