1、函数的定义:如果当变量x在其窜改范围内肆意取定一个数值时,量y遵循必然的法例f总有肯定的数值与它对应,则称y是x的函数。变量x的窜改范围叫做这个函数的定义域。凡是x叫做自变量,y叫做函数值(或因变量),变量y的窜改范围叫做这个函数的值域。注:为了表白y是x的函数,我们用暗号y=f(x)、y=f(x)等等来表示。这里的字母”f”、”f”表示y与x之间的对应法例即函数干系,它们是能够肆意采取分歧的字母来表示的。如果自变量在定义域内任取一个肯定的值时,函数只要一个肯定的值和它对应,这类函数叫做单值函数,不然叫做多值函数。这里我们只会商单值函数。
我的题目:
4、空集:我们把不含任何元素的调集叫做空集。记作,并规定,空集是任何调集的子集。
5、全部实数构成的调集叫做实数集。记作r。
1、并集:普通地,由统统属于调集a或属于调集b的元素构成的调集称为a与b的并集。记作aub。(在求并集时,它们的大众元素在并集合只能呈现一次。)
4、全部有理数构成的调集叫做有理数集。记作q。
3、真子集:如何调集a是调集b的子集,但存在一个元素属于b但不属于a,我们称调集a是调集b的真子集。
由函数的定义可知,一个函数的构成要素为:定义域、对应干系和值域。因为值域是由定义域和对应干系决定的,以是,如果两个函数的定义域和对应干系完整分歧,我们就称两个函数相称。
2、常量与变量
调集间的根基干系
即cua={x|x∈u,且xa}。
以上我们所述的都是有限区间,除此以外,另有无穷区间:
(-∞,b):表示小于b的实数的全部,也可记为:-∞<x<b;
1、有限集:我们把含有有限个元素的调集叫做有限集,含有无穷个元素的调集叫做无穷集。
2、描述法:用调集统统元素的共同特性来表示调集。
a):剖析法:用数学式子表示自变量和因变量之间的对应干系的体例便是剖析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2y2=r2
2、用card来表示有限集合元素的个数。比方a={a,b,c},则card(a)=3。
2、统统正整数构成的调集叫做正整数集。记作n或n。
1、函数与极限
card(a)card(b)=card(aub)card(anb)
1、黉舍里开活动会,设a={x|x是插手一百米跑的同窗},b={xx是插手四百米跑的同窗}。黉舍规定,每个插手上述比赛的同窗最多只能插手两项,请你用调集的运算申明这项规定,并解释以下调集运算的含义。1、aub;2、anb。
2相称:如何调集a是调集b的子集,且调集b是调集a的子集,此时调集a中的元素与调集b中的元素完整一样,是以调集a与调集b相称,记作a=b。
2、函数的单调性:如果函数在区间(a,b)内跟着x增大而增大,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数在区间(a,b)内跟着x增大而减小,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
普通地我们把研讨工具统称为元素,把一些元素构成的团体叫调集(简称集)。调集具有肯定性(给定调集的元素必须是肯定的)和互同性(给定调集合的元素是互不不异的)。比如“身材较高的人”不能构成调集,因为它的元素不是肯定的。