因为任何故前存在过的生物,非论灭尽的还是当代的,都可归入少数多少纲领中;因为各个纲领中的全数成员,根据我们的学说,都被纤细的级进所接连,倘若我们的汇集差未几是完整的,则最优的、独一能够的分类应当是遵循谱系的;因此血缘是博物学者们在“天然体系”此术语下所寻求的相互联络的不易发觉的纽带。遵循此观点,我们便能够了解,在大部分博物学者的眼中为安在分类上胚胎的布局的首要性乃至大于成体的布局。在植物的几个或更多的群中,非论在成体状况中其布局与习性相互有多大的不同,倘若它们经过非常类似的胚胎阶段,我们便能肯定它们都传自于一个亲范例,统统相互有密切的关联。如此一来,胚胎布局中的共同性便闪现了血缘的共同性:但是胚胎发育中的不类似性并不能申明血缘的不分歧,因为在两个群之一群中,能够发育阶段曾被按捺,或者或许因为要适应新的糊口习性而被窜改很多,使得没法再被辨认。
就某些植物而言,持续变异能够产生在生命的初期,或者各级变异能够在比其初次呈现更早的龄期获得遗传。在统统这些环境中,同我们在短面翻飞鸽所体味到的那样,幼体或胚胎就非常近似生长的亲范例;在多少全群中或者只在多少亚群中,像乌贼、陆栖贝类、淡水甲壳类、蜘蛛类另有虫豸这一类纲领里的多少成员,这是生长的规律。对于这些群的幼体不经过任何变态的终究启事,我们能够看到这是经过以下的究竟产生的:那就是因为幼体应当在幼年获得本身所需,并且因为它们遵守亲代那般的糊口习性;因为在此景象下,它们必须根据与亲代一样的体例产生变异,这对于其保存根基上是没法贫乏的。别的,非常多陆栖的与淡水的植物不产生任何变态,但同群的海栖成员却不得不历经各种分歧的变态,对这一奇特的究竟,米勒曾经指出某种植物适应于在陆地上或淡水里栖息,而非在海水里栖息,此种迟缓的窜改过程将因为不经过统统幼体阶段而大大地简化,因为这般新的、窜改很大的糊口习性下,找到既适于幼体阶段又适于成体阶段而还没有被别的生物所占有或占有得不好的位置很不轻易。此种环境下,天然挑选将会对在越来越幼的龄期中一步步获得的成体布局无益;因此之前变态的全数陈迹最后便消逝了。
我曾经在第一章中说过,某种变异不管在哪一春秋起首在亲代闪现,此种变异就有在后代的呼应春秋中又一次闪现的偏向。一些变异只能够在必然的春秋中闪现:比如,处于幼虫、茧或蛹的状况时蚕蛾的特性:又或是,牛在完整长成角时的特性,就是这般。但是,据我们所体味的,最早呈现的变异不管是在生命的初期或晚期,也存在在后代与亲代的必然春秋中又一次闪现的偏向。我决非说事情老是这般,并且我能够举出变异(就这字的最广义言之)的几个例外,这些变异在子代产生的期间相对早于在亲代产生的期间。
上述两个道理为这些究竟作了解释。豢养者们在狗、马、鸽等将近到生长期间时遴选它们并对其停止繁育:他们对所需求的性子是在发展的较初期还是较晚期获得的并不重视,只要发育充分的植物具有它们就行了。在刚才所举的例子中,特别是鸽的这一例,表白了经过野生挑选所积累起来的且已赐与其种类以代价的那些表现特性的差别,凡是在发展的较初期并不闪现,并且这些性状也并非呼应的较初期所遗传。但是,短面翻飞鸽的例子,也就是刚生下十二小时就有着其固有性状,申明这并非普通的规律;因为在此,表现特性的分歧或者必须呈现在比惯常更早的期间,或者倘若并非如此,此种差别必须不是遗传自呼应的龄期,而是遗传自较早的龄期。